2,418 research outputs found

    High-Content Imaging for Large-Scale Detection of Low-Affinity Extracellular Protein Interactions.

    Get PDF
    Extracellular protein interactions coordinate cellular responses with their local environment and have important roles in pathogen invasion and disease. Due to technical challenges associated with studying binding events at the cell surface, the systematic and reliable identification of novel ligand-receptor pairs remains difficult. Here, we describe the development of a cell-based assay using large-scale transient transfections and high-content imaging (HCI) to detect extracellular binding events. We optimized the parameters for efficient transfection of human cells with cDNA plasmids encoding full-length cell surface receptors in 384-well plates. Using a range of well-characterized structurally diverse low-affinity cell surface interactions, we show that transfected cells probed with highly avid ligands can be used to successfully identify ligand-receptor pairs using an HCI platform and automated image analysis software. To establish the high-throughput potential of this approach, we also screened a pool of ligands against a collection of 2455 cell surface expression clones and found that known ligand-receptor interactions could be robustly and consistently detected across the library using this technology

    Rapid and sensitive large-scale screening of low affinity extracellular receptor protein interactions by using reaction induced inhibition of Gaussia luciferase.

    Get PDF
    Extracellular protein interactions mediated by cell surface receptors are essential for intercellular communication in multicellular organisms. Assays to detect extracellular interactions must account for their often weak binding affinities and also the biochemical challenges in solubilising membrane-embedded receptors in an active form. Methods based on detecting direct binding of soluble recombinant receptor ectodomains have been successful, but genome-scale screening is limited by the usual requirement of producing sufficient amounts of each protein in two different forms, usually a "bait" and "prey". Here, we show that oligomeric receptor ectodomains coupled to concatenated units of the light-generating Gaussia luciferase enzyme robustly detected low affinity interactions and reduced the amount of protein required by several orders of magnitude compared to other reporter enzymes. Importantly, we discovered that this flash-type luciferase exhibited a reaction-induced inhibition that permitted the use of a single protein preparation as both bait and prey thereby halving the number of expression plasmids and recombinant proteins required for screening. This approach was tested against a benchmarked set of quantified extracellular interactions and shown to detect extremely weak interactions (KDs ≥ μM). This method will facilitate large-scale receptor interaction screening and contribute to the goal of mapping networks of cellular communication

    Cell Surface Receptor Identification Using Genome-Scale CRISPR/Cas9 Genetic Screens.

    Get PDF
    Intercellular communication mediated by direct interactions between membrane-embedded cell surface receptors is crucial for the normal development and functioning of multicellular organisms. Detecting these interactions remains technically challenging, however. This manuscript describes a systematic genome-scale CRISPR/Cas9 knockout genetic screening approach that reveals cellular pathways required for specific cell surface recognition events. This assay utilizes recombinant proteins produced in a mammalian protein expression system as avid binding probes to identify interaction partners in a cell-based genetic screen. This method can be used to identify the genes necessary for cell surface interactions detected by recombinant binding probes corresponding to the ectodomains of membrane-embedded receptors. Importantly, given the genome-scale nature of this approach, it also has the advantage of not only identifying the direct receptor but also the cellular components that are required for the presentation of the receptor at the cell surface, thereby providing valuable insights into the biology of the receptor

    Jamb and Jamc Are Essential for Vertebrate Myocyte Fusion

    Get PDF
    Jamb and Jamc are an essential cell surface receptor pair that interact to drive fusion between muscle precursor cells during zebrafish development

    A rapid and scalable method for selecting recombinant mouse monoclonal antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal antibodies with high affinity and selectivity that work on wholemount fixed tissues are valuable reagents to the cell and developmental biologist, and yet isolating them remains a long and unpredictable process. Here we report a rapid and scalable method to select and express recombinant mouse monoclonal antibodies that are essentially equivalent to those secreted by parental IgG-isotype hybridomas.</p> <p>Results</p> <p>Increased throughput was achieved by immunizing mice with pools of antigens and cloning - from small numbers of hybridoma cells - the functionally rearranged light and heavy chains into a single expression plasmid. By immunizing with the ectodomains of zebrafish cell surface receptor proteins expressed in mammalian cells and screening for formalin-resistant epitopes, we selected antibodies that gave expected staining patterns on wholemount fixed zebrafish embryos.</p> <p>Conclusions</p> <p>This method can be used to quickly select several high quality monoclonal antibodies from a single immunized mouse and facilitates their distribution using plasmids.</p

    Investigating cellular recognition using crispr/cas9 genetic screening.

    Get PDF
    Neighbouring cells can recognise and communicate with each other by direct binding between cell surface receptor and ligand pairs. Examples of cellular recognition events include pathogen entry into a host cell, sperm-egg fusion, and self/nonself discrimination by the immune system. Despite growing appreciation of cell surface recognition molecules as potential therapeutic targets, identifying key factors contributing to cellular recognition remains technically challenging to perform on a genome-wide scale. Recently, genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) knockout or activation (CRISPR-KO/CRISPRa) screens have been applied to identify the molecular determinants of cellular recognition. In this review, we discuss how CRISPR-KO/CRISPRa screening has contributed to our understanding of cellular recognition processes, and how it can be applied to investigate these important interactions in a range of biological contexts. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved

    Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans.

    Get PDF
    Many important infectious diseases are the result of zoonoses, in which pathogens that normally infect animals acquire mutations that enable the breaching of species barriers to permit the infection of humans. Our understanding of the molecular events that enable host switching are often limited, and yet this is a fundamentally important question. Plasmodium falciparum, the etiological agent of severe human malaria, evolved following a zoonotic transfer of parasites from gorillas. One gene-rh5-which encodes an essential ligand for the invasion of host erythrocytes, is suspected to have played a critical role in this host switch. Genome comparisons revealed an introgressed sequence in the ancestor of P. falciparum containing rh5, which likely allowed the ancestral parasites to infect both gorilla and human erythrocytes. To test this hypothesis, we resurrected the ancestral introgressed reticulocyte-binding protein homologue 5 (RH5) sequence and used quantitative protein interaction assays to demonstrate that this ancestral protein could bind the basigin receptor from both humans and gorillas. We also showed that this promiscuous receptor binding phenotype of RH5 was shared with the parasite clade that transferred its genome segment to the ancestor of P. falciparum, while the other lineages exhibit host-specific receptor binding, confirming the central importance of this introgression event for Plasmodium host switching. Finally, since its transfer to humans, P. falciparum, and also the RH5 ligand, have evolved a strong human specificity. We show that this subsequent restriction to humans can be attributed to a single amino acid mutation in the RH5 sequence. Our findings reveal a molecular pathway for the origin and evolution of human P. falciparum malaria and may inform molecular surveillance to predict future zoonoses
    • …
    corecore